dans toutes les directions de l'espace des \vec{k} . En présence de mélange s-f, il apparaît donc deux bandes de caractère mixte s et f, dont le caractère f augmente quand on se rapproche du niveau E_m (dans le cas avec mélange s-f, la structure de bandes est tracée en trait plein sur la figure 30) : pour une direction de \vec{k} donnée, la bande inférieure va d'une énergie voisine du bas E_B de la bande de conduction initiale jusqu'à l'énergie E_m un peu inférieure à l'énergie E_m de l'état 4f, tandis que la bande supérieure va de l'énergie E_m un peu supérieure à l'énergie E_m jusqu'à une énergie voisine du haut E_H de la bande de conduction initiale. Il apparaît donc une bande interdite d'énergie E_m — E_m . Les positions de E_m et de E_m par rapport à E_m sont données par :

$$E_{m+} - E_{m} = \frac{-(E_{m} - E_{B}) + \sqrt{(E_{m} - E_{B})^{2} + 4|V_{kf}|^{2}}}{2}$$

$$E_{m-} - E_{m} = \frac{(E_{H} - E_{m}) - \sqrt{(E_{H} - E_{m})^{2} + 4|V_{kf}|^{2}}}{2}$$
(87)

La largeur de la bande E_H - E_B est de l'ordre de quelques électron-volts tandis que les valeurs de $V_{\rm kf}$ déduites de la largeur Δ de l'état lié virtuel 4f sont de l'ordre du dixième d'électron-volt. Dans le cas le plus probable où $E_{\rm m}$ est à la fois éloigné de $E_{\rm H}$ et de $E_{\rm B}$ ($|E_{\rm B}-E_{\rm m}|$ >> $V_{\rm kf}$ et $|E_{\rm H}-E_{\rm m}|$ >> $V_{\rm kf}$), la bande interdite est donnée par :

$$E_{m+} - E_{m-} = \frac{|V_{kf}|^2}{E_m - E_B} + \frac{|V_{kf}|^2}{E_H - E_m}$$
 (88)

La formule (83) donne une largeur de l'ordre de quelques centièmes d'électron-volt suivant la position de E_m ; cette largeur peut varier avec la position de E_m ; en particulier, quand E_m se rapproche du haut (ou du bas) de bande dans une direction de \vec{k} donnée, la bande interdite pour cette direction de \vec{k} augmente et tend vers V_{kf} quand E_m tend vers E_H (ou E_B).

Nous discutons maintenant la résistivité en fonction de la pression en tenant compte du mélange s-f dans toutes les directions de l'espace des \vec{k} , dans le cas d'une bande de conduction traitée en électrons libres. Comme dans le cas